
Journal of Computational Physics 228 (2009) 3816–3836
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Discretizing delta functions via finite differences
and gradient normalization

John D. Towers
MiraCosta College, 3333 Manchester Avenue, Cardiff-by-the-Sea, CA 92007-1516, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 June 2007
Received in revised form 27 October 2008
Accepted 12 February 2009
Available online 27 February 2009

Keywords:
Delta function
Level set method
Discretization
High codimension
Finite difference
Approximation
Regular mesh
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.02.012

E-mail address: john.towers@cox.net
URL: http://www.miracosta.edu/home/jtowers/
In [J.D. Towers, Two methods for discretizing a delta function supported on a level set,
J. Comput. Phys. 220 (2007) 915–931] the author presented two closely related finite dif-
ference methods (referred to here as FDM1 and FDM2) for discretizing a delta function sup-
ported on a manifold of codimension one defined by the zero level set of a smooth mapping
u : Rn # R. These methods were shown to be consistent (meaning that they converge to
the true solution as the mesh size h! 0) in the codimension one setting.

In this paper, we concentrate on n 6 3, but generalize our methods to codimensions
other than one – now the level set function is generally a vector valued mapping
~u : Rn # Rm; 1 6 m 6 n 6 3. Seemingly reasonable algorithms based on simple products
of approximate delta functions are not generally consistent when applied to these prob-
lems. Motivated by this, we instead use the wedge product formalism to generalize our
FDM algorithms, and this approach results in accurate, often consistent approximations.
With the goal of ensuring consistency in general, we propose a new gradient normalization
process that is applied before our FDM algorithms. These combined algorithms seem to be
consistent in all reasonable situations, with numerical experiments indicating Oðh2Þ con-
vergence for our new gradient-normalized FDM2 algorithm.

In the full codimension setting ðm ¼ nÞ, our gradient normalization processing also
improves accuracy when using more standard approximate delta functions. This combina-
tion also yields approximations that appear to be consistent.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we are interested in approximating two types of integrals involving Dirac delta functions. The first type of
integral is of the form
I1 ¼
Z

Rn
f ð~xÞ

Ym
i¼1

dðuið~xÞÞk^mr~uð~xÞkd~x;

^mr~uð~xÞ :¼ ru1ð~xÞ ^ ru2ð~xÞ ^ � � � ^ rumð~xÞ:
ð1Þ
(See e.g. [6] for a review of wedge products.) The integral I1 is an equivalent representation for the integral
Z
C

f ð~xÞdVr
; ð2Þ
. All rights reserved.

mailto:john.towers@cox.net
http://www.miracosta.edu/home/jtowers/
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836 3817
where ~x ¼ ðx1; . . . ; xnÞ 2 Rn; f : Rn
R, and C is a manifold of dimension r ¼ n�m defined by the intersection of the zero

level sets of m smooth functions ui : Rn
R; i ¼ 1; . . . ;m with 1 6 m 6 n. Here dVr denotes r-dimensional volume. Integrals

of the form I1 occur frequently when applying level set methods [11–13,15,20]. More specifically, one often requires an
approximation to the integral (2). What makes this computation not completely straightforward is the fact that the inte-
grand f and the level function~u are typically only known at the grid points of a regular mesh. In this situation, the represen-
tation (1) is more amenable to discretization than the equivalent integral (2), which would require some sort of
parametrization of the manifold C.

Problems like this also arise outside of level set applications. An example is the task of recovering spherical harmonic ampli-
tudes from data given on a regular three-dimensional mesh. This requires approximating a codimension one integral of the
type above, where C is a sphere. Ref. [10] gives an interesting, and evidently quite accurate algorithm for accomplishing this.

There are two reasons why we use the somewhat technical wedge product notation in (1). First, it provides a unified rep-
resentation of several integrals that seem somewhat disparate when more standard notation is used. Second, the wedge
product formalism provides us with a novel and accurate way to discretize the delta function products that appear in (1)
and (6). We will discuss this discretization in Section 1.2, but for now we provide more familiar representations of the for-
mula (1) that result for n 6 3. When m ¼ 1, with u1 ¼ u formula (1) takes the form
I1 ¼
Z

Rn
f ð~xÞdðuð~xÞÞkruð~xÞkd~x: ð3Þ
When m ¼ n, formula (1) is equivalent to
I1 ¼
Z

Rn
f ð~xÞ

Yn

i¼1

dðuið~xÞÞjdetr~uð~xÞjd~x: ð4Þ
Finally, when n ¼ 3; m ¼ 2 (intersection of two surfaces in R3), formula (1) is the same as
I1 ¼
Z

R3
f ð~xÞdðu1ð~xÞÞdðu2ð~xÞÞkru1ð~xÞ � ru2ð~xÞkd~x: ð5Þ
In this last formula, if f � 1, the integral I1 gives the arclength of the curve C, and this arclength case of formula (5) can al-
ready be found in various places in the level set literature, e.g. [2].

The second type of integral that we wish to approximate is of the form
I2 :¼
Z

Rn
f ð~xÞ

Yn

i¼1

dðuið~xÞÞd~x: ð6Þ
Integrals of type I2 occur when applying level set methods for computing multivalued solutions to the semiclassical limit of
the Schrödinger equation and the high frequency limit of the wave equation [4,8,9,14]. In this situation, C will generally con-
sist of a finite set of points C ¼ f~xm : m ¼ 1; . . . ;Ng, and the integral (6) can be written as a finite sum:
I2 ¼
XN

m¼1

f ð~xmÞ=jdetr~uð~xmÞj: ð7Þ
1.1. Computing observables for the Schrödinger equation

We give a very brief sketch of how integrals of type I2 arise in problems of high frequency wave propagation, focusing on
the task of computing physical observables for the semiclassical limit of the Schrödinger equation, as presented in [8]. For the
purposes of the present paper, the problem boils down to first solving nþ 1 Cauchy problems for the linear Liouville equation
wt þ~p � r~xw�r~xVð~xÞ � r~pw ¼ 0 ð8Þ
for the n functions w ¼ /ið~x;~p; tÞ, and the single function w ¼ f ð~x;~p; tÞ. In the PDE (8), Vð~xÞ is a given potential,~x represents
the spatial variables, and~p is a vector of auxiliary variables introduced as a device to capture multivalued solutions [7]. The
initial data for the Cauchy problems (8) is
/ið~x;~p;0Þ ¼ pi � @xi S0ð~xÞ; i ¼ 1; . . . ;n;

f ð~x;~p;0Þ ¼ q0ð~xÞ;
ð9Þ
where S0 (the phase), and q0 (the density) are prescribed functions. Using the solutions of (8) and (9), the averaged density �q
and velocity components �v i (these are physical observables) can be computed via
�qð~x; tÞ ¼
Z

Rn
f ð~x;~p; tÞ

Yn

i¼1

dð/ið~x;~p; tÞÞd~p;

�v ið~x; tÞ ¼ 1
�qð~x; tÞ

Z
Rn

pif ð~x;~p; tÞ
Yn

i¼1

dð/ið~x;~p; tÞÞd~p; i ¼ 1; . . . ; n:

ð10Þ

3818 J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836
Thus at each point ð~x; tÞ, each physical observable requires the computation of an I2 type of integral. One potential source of
notational confusion is that in the integrals appearing in (10),~x is playing the role of a parameter, while~p is playing the role
that was played by ~x in our earlier discussion, e.g. (6). Also, note that here ~p # ~/ð~x;~p; tÞ is playing the role of the level
function.

1.2. Discretization algorithms

We seek a discretized version of the product of delta functions appearing in the integrals I1 and I2, and our goal is to
obtain this discretization by differencing Heaviside functions, generalizing the approach in [19]. To this end, we start by con-
sidering the following wedge product:
rHðu1Þ ^ � � � ^ rHðumÞ ¼ H0ðu1Þ � � �H0ðumÞru1 ^ � � � ^ rum ¼ dðu1Þ � � � dðumÞru1 ^ � � � ^ rum: ð11Þ

Taking the dot product of both sides with ru1 ^ � � � ^ rum, and then solving for the product of delta functions gives
dðu1Þ � � � dðumÞ ¼ rHðu1Þ ^ � � � ^ rHðumÞ � ru1 ^ � � � ^ rum

kru1 ^ � � � ^ rumk2 : ð12Þ
This is the basic formula underlying our approach – the right hand side of (12) is what we will discretize. (See Section A for a
translation of this and related formulas into ones involving determinants instead of wedge products.)

To describe our approximation methods, we first discretize Rn by defining the mesh points
~xk ¼ x1
k1
; . . . xn

kn

� �
: k :¼ ðk1; . . . ; knÞ 2 Zn

n o

of a regular grid. For simplicity of notation, we assume that the mesh spacing h is the same in all dimensions, xi

ki
¼ kih; ki 2 Z.

If vk ¼ vð~xkÞ is a function defined at each meshpoint~xk, we define the discrete gradient operator rh via
rhvk ¼
Xn

i¼1

vð~xk þ h~eiÞ � vð~xk � h~eiÞ
2h

� �
~ei; ð13Þ
where f~e1; . . . ;~eng is the standard basis for Rn.
We approximate the integrals I1 and I2 using
Ih
1 :¼ hn

X
k2S

f ð~xkÞdhð~xk;~uÞ ^mrh~uk

��� ���; Ih
2 :¼ hn

X
k2S

f ð~xkÞdhð~xk;~uÞ; ð14Þ
where dhð~xk;~uÞ is a discretized version of the delta function product
Qm

i¼1dðuið~xkÞÞ, and S is a subset of Zn containing those
indices k where f ð~xkÞdhð~xk;~uÞ – 0.

We can now discretize the right side of formula (12). The result is

Finite difference method 1 (FDM1)
dh
FDM1ð~xk;~uÞ :¼ r

hHhðu1
kÞ ^ � � � ^ r

hHhðum
k Þ � r

hu1
k ^ � � � ^ r

hum
k

rhu1
k ^ � � � ^ r

hum
k

��� ���2 : ð15Þ
In (15), Hhð�Þ represents a possibly smoothed version of the Heaviside function Hð�Þ, with the regularization parameter
depending on the mesh size h. FDM1 is a direct generalization of the Method 1 found in [19], meaning that the two algo-
rithms are the same if m ¼ 1.

Examples of smoothed Heaviside functions used in (15) are8

HC;�ðzÞ ¼

0; z < �;
1
2þ z

2�þ 1
2p sin pz

�

� �
; �� 6 z 6 �;

1; � < z

><
>: ð16Þ
with � ¼ 1:5h and
HL;�ðzÞ ¼
0; z 6 �;
1
2þ 1

� z� signðzÞz2

2�

� �
; jzj < �;

1; z P �

8><
>: ð17Þ
with � ¼ h or 2h. In many cases, FDM1 also gives acceptable results using Hð�Þ without any smoothing, but a small dose of
smoothing generally gives better accuracy.

The approximate Heaviside function HC;� is associated with the approximate delta function dC;� defined by
dC;�ðzÞ ¼
1

2� 1þ cos pz
�

� �� �
; jzj < �;

0; jzjP �;

(
ð18Þ

J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836 3819
and the approximate Heaviside function HL;� is associated with the linear hat approximate delta function:
dL;�ðzÞ ¼
1
� 1� z

�

		 		� �
; jzj < �;

0; jzjP �:

(
ð19Þ
To derive our second finite difference method, we start with the function IðzÞ ¼
R z

0 HðfÞdf ¼ maxðz;0Þ, and the relationship
rIðuiÞ ¼ HðuiÞrui; i ¼ 1; . . . ;m: ð20Þ
Taking the dot product of both sides with the vector rui, and solving for HðuiÞ gives
HðuiÞ ¼ rIðuiÞ � rui

kruik2 ; i ¼ 1; . . . ;m: ð21Þ
Next, we discretize (12) as in the case of FDM1, but this time we also discretize the formula (21), which gives the following
two-stage algorithm:

Finite difference method 2 (FDM2)
Hhðui
kÞ :¼ r

hIðui
kÞ � r

hui
k

rhui
k

��� ���2 ; i ¼ 1; . . . ;m;

dh
FDM2ð~xk;~uÞ :¼ r

hHhðu1
kÞ ^ � � � ^ r

hHhðum
k Þ � r

hu1
k ^ � � � ^ r

hum
k

rhu1
k ^ � � � ^ r

hum
k

��� ���2 :

ð22Þ
FDM2 is approximately a generalization of Method 2 in [19]. Note that we use the function I in FDM2 as is, i.e., without any
regularization. This is an advantage of Method 2 – there are no parameters to specify.

We are also interested in approximate delta functions constructed as a product of pointwise approximate delta functions:

Product of pointwise approximate delta functions (PDF)
dh
PDFð~xk;~uÞ :¼

Ym
i¼1

dP;�ðuið~xkÞÞ: ð23Þ
Here dP;� denotes a pointwise approximate delta function such as dC;� or dL;�, and � ¼ mh, where m is some constant. For exam-
ple, we usually take m ¼ 1:5 for dC;�, and m ¼ 1 or m ¼ 2 for dL;�.

For PDF-type delta functions, it is often more effective to allow � to vary spatially, depending on the local behavior of the
level function ~u. For the case where m ¼ n, we will also consider the following local version of PDF, proposed in [8,9]:

Product of pointwise approximate delta functions – local version (PDFL)
dh
PDFLð~xk;~uÞ :¼

Yn

i¼1

dL;�k ðuið~xkÞÞ; �k ¼ 2 maxð1; jdetrh~ukjÞh: ð24Þ
Here we are using the notation detrh~uk in place ofrhu1
k ^ � � � ^ r

hun
k. This is justified, since for the special case where m ¼ n,

the wedge product ru1 ^ � � � ^ run is equal to the Jacobian detr~u.

Remark 1.1. We are mostly interested in the FDM algorithms; we include PDF and PDFL primarily for the purpose of
comparison. However, a secondary reason for discussing the PDF/PDFL algorithms is related to the gradient normalization
process that we will discuss in Section 3. We will see in our numerical experiments that the PDF/PDFL algorithms can often
be improved by combining them with gradient normalization.
2. Rationale for discretizing the wedge product formulation

It is already well known that seemingly reasonable methods for approximating codimension one integrals of type I1 may
not be consistent [5], and several methods that overcome this difficulty have been proposed [5,16,19]. By consistent, we
mean that the approximation converges to the true solution as the mesh size h! 0.

To discuss the kind of difficulties that arise when the codimension is greater than one, let us focus on the full codimension
problem with m ¼ n ¼ 2 to be specific, and assume that both of the level functions are signed distance functions, whose gra-
dients are orthogonal. In this case, the matrix r~u is orthogonal, jdetr~uj ¼ 1, and I1 ¼ I2.

In one space dimension, a sufficient condition for consistency when the level function is of the form uðxÞ ¼ x� �x (a signed
distance function) is [1,17]
h
X
j2Z

dhðxj; uÞ ¼ 1þ OðhlÞ; l > 0: ð25Þ

3820 J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836
There are many approximate delta functions that satisfy this property, for example dC;� with � ¼ 1:5mh; dL;� with � ¼
mh; m 2 Zþ [18]. Other examples are provided by the one-dimensional versions of the FDM1 and FDM2 algorithms.

Now consider the two-dimensional situation. Suppose that our level functions are uðx; yÞ, and vðx; yÞ, and that
dhðxj; yk; u;vÞ � dðuðxj; ykÞÞdðvðxj; ykÞÞ is a discrete approximation to the product of delta functions dðuÞdðvÞ. In this setting,
the analog of (25) is
h2
X
j2Z

X
k2Z

dhðxj; yk; u; vÞ ¼ 1þ OðhlÞ; l > 0: ð26Þ
This two-dimensional condition seems to be much harder to satisfy than the one-dimensional version. For example, it is nat-
ural to try to construct dhðxj; yk; u;vÞ by forming a product of codimension one approximations
dhðxj; yk; u;vÞ ¼ dhðxj; yk; uÞdhðxj; yk; vÞ: ð27Þ
Unfortunately, unless it happens that u and v are aligned with the mesh, i.e.,
u ¼ uðxÞ; v ¼ vðyÞ; or u ¼ uðyÞ; v ¼ vðxÞ:
(26) generally fails, and this approach will not be consistent, see Example 1 of Section 4. This lack of consistency may occur
even if the codimension one delta functions are FDM1 or FDM2, despite the fact they yield consistent approximations for
codimension one instances of I1. The main source of difficulty here is misalignment of the level sets with the mesh. For codi-
mension one problems, lack of consistency due to this type of misalignment has been well studied [5,17,18].

It is the lack of consistency for product type approximations of the form (27) that leads us to discretize the wedge product
formulation on the right side of (12) rather than the more straightforward product formulation on the left side of (12). Our
numerical experiments indicate that in many cases, this wedge product formulation does indeed give consistent approxima-
tions. In those cases where consistency fails, it can be recovered by the gradient normalization processing described in the
next section.

Above we have explained that simple products of one-dimensional or codimension one delta functions are not adequate
for higher codimension problems, but have not explained why the new FDM algorithms based on wedge products might
be more effective. The following proposition shows that for a very simple linear full codimension problem in R2, the FDM1
algorithm gives the exact solution. (Numerical experiments indicate that FDM2 also gives the exact solution for this
type of problem.) The simplicity of the setup notwithstanding, this is significant because none of the more standard
types of algorithms discussed above are generally consistent when applied to this type of problem; see Example 1 of
Section 4.

Proposition 2.1. Assume that u : R2 # R and v : R2 # R are linear, D :¼ uxvy � uyvx – 0, and f ðx; yÞ � 1. If we approximate I2

by Ih
2 defined by
Ih
2 :¼ h2

X
j2Z

X
k2Z

dh
FDM1ðxj; yk; u;vÞ; ð28Þ
then Ih
2 ¼ I2 ¼ 1=jDj, i.e., the approximation to I2 using FDM1 is exact.

Proof 1. First, note that we are dealing with the special case of formula (7) where N ¼ 1; f ðx; yÞ � 1, and so the exact value of
I2 is I2 ¼ 1=jDj. Let D0

x and D0
y denote centered difference operators, i.e., Dx

0pj;k ¼ ðpjþ1;k � pj�1;kÞ=2; Dy
0pj;k ¼ ðpj;kþ1 � pj;k�1Þ=2.

With this notation,
dh
FDM1ðxj; yk; u;vÞ ¼ 1

h2D
Dx

0Hðuj;kÞDy
0Hðv j;kÞ � Dy

0Hðuj;kÞDx
0Hðv j;kÞ

� �
: ð29Þ
Assume that the lines u ¼ 0 and v ¼ 0 intersect at the point ðx0; y0Þ. Consider the setup shown in Fig. 1, which shows a closed
rectangular region R containing ðx0; y0Þ, and having sides Ca; a 2 fL;B;R; Tg. In addition to the line u ¼ 0, we show a narrow
strip of width OðhÞ containing that line. It is bounded by a pair of dashed lines. The quantities Dx

0Hðuj;kÞ and Dy
0Hðuj;kÞ are sup-

ported within that strip. Similarly, we show a narrow strip centered on the line v ¼ 0, marked by dashed lines, where
Dx

0Hðv j;kÞ and Dy
0Hðv j;kÞ are supported. Note that the discrete delta function dh

FDM1ðxj; yk; u;vÞ is supported within the region
Q where the two strips intersect. Clearly, we may take the rectangleR large enough that the support of dh

FDM1ðxj; yk; u;vÞ (con-
tained in the region Q) lies in the interior R. Moreover, it is possible to construct R so that the lines u ¼ 0 and v ¼ 0, as well
as the surrounding transition zones, intersect the sides of the rectangle away from the corners. Finally, by making one final
small adjustment, if necessary, we can arrange that the sides of the rectangle coincide with grid lines. Let J1; J2; K1, and K2 be
indices such that R ¼ ½xJ1

; xJ2
� � ½yK1

; yK2
�.

Plugging (29) into (28), and using the fact that dh
FDM1ðxj; yk; u;vÞ is supported in the interior of R, we have
Ih
2 ¼

1
D
XK2

k¼K1

XJ2

j¼J1

Dx
0Hðuj;kÞDy

0Hðv j;kÞ � Dy
0Hðuj;kÞDx

0Hðv j;kÞ
� �

: ð30Þ

u=0

v=0

H(u)=0 H(u)=1

H(v)=0

H(v)=1

(x+,y+)

(x0,y0)

CB

CL

CR

CT

Q

∇ u

∇ v

(x−,y−)
q p

θ

τ

Fig. 1. The geometry of Proposition 2.1.

J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836 3821
The following identities hold for the terms in this sum:
Dx
0Hðuj;kÞDy

0Hðv j;kÞ ¼ Dx
0 Hðuj;kÞDy

0Hðv j;kÞ
� �

� Hðuj;kÞDx
0D

y
0Hðv j;kÞ �

1
2

Dx
þHðuj;kÞDx

þD
y
0Hðv j;kÞ � Dx

þHðuj�1;kÞDx
þD

y
0Hðv j�1;kÞ

 �
;

Dy
0Hðuj;kÞDx

0Hðv j;kÞ ¼ Dy
0 Hðuj;kÞDx

0Hðv j;kÞ
� �

� Hðuj;kÞDy
0D

x
0Hðv j;kÞ �

1
2

Dy
þHðuj;kÞDy

þD
x
0Hðv j;kÞ � Dy

þHðuj;k�1ÞDy
þD

x
0Hðv j;k�1Þ

 �
:

ð31Þ
Two observations about (31) allow us to get the sum (30) into a form where we can sum by parts. The first is that
Dx

0D
y
0Hðv j;kÞ ¼ Dy

0D
x
0Hðv j;kÞ. The second observation is that the terms in square brackets are only nonzero at a few grid points

near the intersection point ðx0; y0Þ, and in fact they telescope, making no contribution to the sum. Thus,
Ih
2 ¼

1
D
XK2

k¼K1

XJ2

j¼J1

Dx
0ðHðuj;kÞDy

0Hðv j;kÞÞ � Dy
0ðHðuj;kÞDx

0Hðv j;kÞÞ
� �

¼ 1
DðSL þ SR þ SB þ STÞ; ð32Þ
where we have summed by parts to get the second equality, and
SL ¼ �
XK2

k¼K1

1
2

HðuJ1�1;kÞDy
0Hðv J1�1;kÞ þ HðuJ1 ;kÞD

y
0Hðv J1 ;kÞ

� �
;

SR ¼ þ
XK2

k¼K1

1
2

HðuJ2 ;kÞD
y
0Hðv J2 ;kÞ þ HðuJ2þ1;kÞDy

0Hðv J2þ1;kÞ
� �

;

SB ¼ þ
XJ2

j¼J1

1
2

Hðuj;K1�1ÞDx
0Hðv j;K1�1Þ þ Hðuj;K1 ÞD

x
0Hðv j;K1 Þ

� �
;

ST ¼ �
XJ2

j¼J1

1
2

Hðuj;K2 ÞD
x
0Hðv j;K2 Þ þ Hðuj;K2þ1ÞDx

0Hðv j;K2þ1Þ
� �

:

ð33Þ
Consider the sums Sa appearing in (33). Each Sa corresponds to a side Ca of @R, and the plus and minus signs are consistent
with �CL þ CR þ CB � CT , i.e., a counterclockwise traversal of @R. Due to the factors Dx

0HðvÞ and Dy
0HðvÞ appearing in each

term of these sums, it is clear that the only nonzero contribution comes from the narrow transition region where the jump
in HðvÞ is concentrated. This transition region intersects @R in two places, but we can ignore the one where HðuÞ ¼ 0. Thus all
of the contribution to the sums Sa comes from the segment of @R where the transition zone for HðvÞ intersects @R, and
simultaneously HðuÞ ¼ 1. In particular, this segment is centered on the point ðxþ; yþÞ, where HðuÞ ¼ 1, and the line v ¼ 0
intersects @R. Moreover, only one of the Sa sums, call it Sa� is nonzero. Since HðuÞ � 1 in a neighborhood of the transition
zone containing ðxþ; yþÞ, the single nonzero sum Sa� reduces to an average of two telescoping sums, and it is easy to see that
Sa� ¼ 	1. So, we have
Ih
2 ¼ Sa�=D ¼ 	1=D; ð34Þ
and thus, recalling that I2 ¼ 1=jDj, it only remains to show that signðSa� Þ ¼ signðDÞ.
To this end, let ~sðx; yÞ denote the unit tangent vector to @R, with the sign of ~s taken to be consistent with

counterclockwise traversal of @R. Due to the plus and minus signs attached to the sums in (33),

3822 J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836
signðSa� Þ ¼ signð~sðxþ; yþÞ � rvÞ: ð35Þ
There are two points where the line u ¼ 0 intersects @R. Of these two points, let ðx�; y�Þ denote the one where
sign ~sðx�; y�Þ � ruð Þ ¼ sign ~sðxþ; yþÞ � rvð Þ: ð36Þ
Define the vectors~p ¼ ðx� � x0; y� � y0Þ and~q ¼ ðxþ � x0; yþ � y0Þ. By considering the possible cases, one finds that because of
(36), the angle h, measured positive counterclockwise from ~p to ~q, satisfies signðhÞ ¼ signð~sðxþ; yþÞ � rvÞ. Note also that
signðdetð~p;~qÞÞ ¼ signðdetðru;rvÞÞ ¼ signðDÞ. Combining the observation that signðhÞ ¼ signðdetð~p;~qÞÞ with (35), the proof
is complete. h

Remark 2.1. A key step in the proof above is getting the sum appearing in (30) into a form where we can sum by parts. This
does not seem to generalize to the three-dimensional setting. Indeed, it is possible to construct three-dimensional examples
(Examples 3 and 4 in Section 4) where the FDM algorithms (and also the PDF/PDFL algorithms) do not converge to the correct
solution. However, when combined with the gradient normalization that we describe in the next section, the FDM algo-
rithms appear to be consistent for all data that is smooth and nonsingular.

Remark 2.2. For codimension two problems (two surfaces in R3 that intersect in one or more curves), the FDM algorithms
seem to be consistent and accurate for data that is not close to singular. No cases of inconsistency of the type observed for
certain full codimension problems in R3 have been found. We do not presently have an analysis of even a simple problem like
that of Proposition (2.1) for the codimension two situation.
3. Gradient normalization

The accuracy of most approximations to delta functions is somewhat sensitive to the particular form of the level set func-
tion ~u. The best possible scenario is to have all components ui of the level function ~u satisfy the following three conditions:

 G1: Their gradients are pairwise orthogonal.

 G2: Their gradients are aligned with the coordinate axes, i.e., perfectly aligned with the mesh.

 G3: They are signed distance functions.

In level set applications, the first and third of these conditions are often met to a high degree of accuracy. This is accom-
plished by re-orthogonalizing and re-distancing the level set functions at regular intervals in the evolution process [11,3,4,9].
The second condition is the least likely to be satisfied because it is difficult or impossible to enforce except in special cases. In
any event, we allow for the possibility that none of G1, G2, G3 is satisfied.

Below we propose two methods, referred to collectively as gradient normalization, of modifying the level set function ~u.
We do this in such a way that the level set C is close to stationary, but the gradient changes so that as many as possible of G1,
G2, G3 are approximately satisfied. We apply these methods to the discrete level set function ~uk before applying FDM1,
FDM2, PDF, or PDFL to compute our approximate delta function.

3.1. Full gradient normalization (FGN)

The gradient normalization method that we will discuss now is applicable when m ¼ n, i.e., full codimension. In R2 it is
possible to construct full codimension examples where neither the PDF nor the PDFL method is consistent, even if the level
functions are signed distance functions whose zero level sets intersect orthogonally. As explained in Section 2, this lack of
consistency stems from misalignment of the grid with the zero level sets of the functions ui. In R3, we can construct full codi-
mension examples where not only PDF and PDFL, but also our FDM algorithms fail to be consistent. With the additional pro-
cessing that we now describe, it seems that all of these algorithms are generally consistent.

Given the level function vector~uk, we compute the n� n discrete gradient matrixrh~uk using (13). We then replace~uk by
~vk and fk by gk where
~vk :¼ rh~uk

h i�1
~uk; gk ¼

fk; for I1;

fk= detrh~uk

			 			; for I2:

(
ð37Þ
and then apply FDM1, FDM2, PDF, or PDFL to ~vk and gk. Using the fact that ~u ¼~0 on the level set C, it is clear that on
C; r~v ¼ In, where In denotes the n� n identity matrix. In other words, by computing ~v we are performing a local realign-
ment of the level sets with the coordinate axes.

Note that FGN processing enforces all three of G1, G2, G3 for points~x lying on C.
Let us see how FGN works in a simple example, specifically a full codimension problem in R2. We are interested in

approximating I1 using a PDF-FGN algorithm. For the sake of concreteness, let � ¼ 2h, and take dL;� to be the one-dimensional
pointwise approximate delta function used to construct our PDF-FGN algorithm. With this choice, the one-dimensional con-
sistency requirement (25) is satisfied, with the OðhlÞ term equal to zero.

J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836 3823
Assume that the two level set functions u and v intersect at the single point ðx; yÞ ¼ ð�x; �yÞ. In this case, by considering the
first few terms in a Taylor series centered at ð�x; �yÞ, and recalling that~vð�x; �yÞ ¼~0, we obtain the following approximation, valid
for ðxj; ykÞ � ð�x; �yÞ:
~v j;k ¼ ð~uðxj; ykÞ; ~vðxj; ykÞÞ � ðxj � �x; yk � �yÞ: ð38Þ
Thus,
dh
PDFðxj; yk;~vÞ ¼ dL;�ð~uðxj; ykÞÞdL;�ð~vðxj; ykÞÞ � dL;�ðxj � �xÞdL;�ðyk � �yÞ: ð39Þ
It follows that
h2
X
k2Z

X
j2Z

dh
PDFðxj; yk;~vÞfj;k � h2

X
k2Z

dL;�ðyk � �yÞ
X
j2Z

dL;�ðxj � �xÞfj;k: ð40Þ
Since dL;�ðxj � �xÞ is zero for jxj � �xj > OðhÞ and dL;�ðy� ykÞ is zero for jyk � �yj > OðhÞ, our approximation should still be valid if
we make the approximation fj;k � f ð�x; �yÞ. From this we obtain
h2
X
k2Z

X
j2Z

dh
PDFðxj; yk;~vÞfj;k � f ð�x; �yÞh

X
k2Z

dL;�ðyk � �yÞh
X
j2Z

dL;�ðxj � �xÞ: ð41Þ
Recalling the consistency condition (25), we get the desired approximation:
h2
X
k2Z

X
j2Z

dh
PDFðxj; yk;~vÞfj;k � f ð�x; �yÞ ¼ I1: ð42Þ
Obviously this is only a heuristic argument meant to explain why we might expect the FGN processing to be effective. The
key point is that the level sets of the modified level set function ~v become (approximately) aligned with the coordinate axes,
at least near the point ð�x; �yÞ. Due to the realignment, the consistency of the component one-dimensional approximate delta
functions takes effect, enforcing consistency for the combined multidimensional approximate delta function. An illustration
of this local realignment can be seen in Fig. 4, associated with Example 8 in Section 4.

There is a potential difficulty that must be dealt with when implementing (37) in combination with the FDM algorithms.
We generally assume that detr~uk does not vanish for~x near C. However, there may be zeros of detr~uk located away from C.
To see the problem caused by such a zero, take the one-dimensional case, and suppose that for some point �x; uð�xÞ > 0, but
u0ð�xÞ ¼ 0, and that signðu0ðxÞÞ ¼ signðx� �xÞ. We will have uðxÞ=u0ðxÞ < 0 for x < �x, and uðxÞ=u0ðxÞ > 0 for x > �x. Thus,
HðuðxÞ=u0ðxÞÞ ¼ Hðx� �xÞ; and so
d
dx

HðuðxÞ=u0ðxÞÞ ¼ dðx� �xÞ:
Since our FDM algorithms are based on differencing approximate Heaviside functions, it is not surprising that the discrete
version of this mechanism can produce spurious delta functions at points where detr~u ¼ 0.

Fortunately, there is a simple fix for this problem. We set our approximate delta function at~xk to zero if signðdetrh~uiÞ is
not constant for all points ~xi close to ~xk. Examples 8 and 10 in Section 4 are cases where this processing is necessary.

The PDF and PDFL algorithms can be combined with the FGN processing without causing any problems of the type de-
scribed above.

3.2. Partial gradient normalization (PGN)

Clearly, the FGN process described above only makes sense if m ¼ n. For problems where n ¼ 3; m ¼ 2, we can still define
a gradient normalization process which makes the zero level sets of (a modified version of)~u approximately orthogonal. Our
approach is based on the Gram–Schmidt method for orthogonalizing a set of vectors. Since m ¼ 2, there are two level set
functions u and v. In this case we start by computing
~vk ¼ vk � cuk; c ¼ r
huk � rhvk

rhuk � rhuk

;

which makes r~vk approximately orthogonal to ruk for ~xk near C.
We then normalize:
ûk ¼ uk

ffi
rhuk � rhuk

q

; v̂k ¼ ~vk

ffi
rhvk � rhvk � c2rhuk � rhuk

q

; ð43Þ
so that, in addition to having approximately orthogonal level sets, û and v̂ are approximately signed distance functions for~x
near C.

PGN enforces G1 and G3 for points ~x lying on C. The alignment requirement G2 will not generally be satisfied.

Remark 3.1. For codimension one problems, where there is just one level set function u : Rn # R1, the gradient
normalization idea was already discussed by Engquist et al. [5]. They proposed replacing uk by vk, where

3824 J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836
vk ¼ uk=krhukk: ð44Þ
Near the level set u ¼ 0, the new level set function vk is approximately a signed distance function.
4. Numerical examples

In this section, we describe a number of numerical experiments. In almost all of these examples (the exception is Example
10), the codimension is greater than one. See [19] for numerical experiments involving FDM1 and FDM2 in the codimension
one setting.

The errors shown in the tables that follow are averages of absolute values of relative errors. The averages are taken over a
number of runs, each run incorporating a small random grid shift. The number of runs required to obtain a reliable average
varies from one example to another, and also from one technique to another. To avoid repetition, we will not give the num-
ber of runs required in each case, but simply note here that it could be as small as four and as large as 256.

In all cases where we used FDM1 or FDM1-FGN, the underlying approximate Heaviside function was HC;� with � ¼ 1:5h.
We apply the FGN processing to the PDF algorithm rather than PDFL. In all cases, the rate of convergence of PDFL-FGN is

the same as that for PDF-FGN, except that the errors are somewhat larger. In other words, FGN works better with the simpler
PDF algorithm. For the PDF algorithm, we used dL;� with � ¼ 2h, unless otherwise stated.

Finally, to simplify notation, we use ðx; yÞ or ðx; y; zÞ for ~x; ðu;vÞ or ðu;v ;wÞ for ~u; ð/;wÞ for ~/, etc.

Example 1. ðn ¼ 2;m ¼ 2Þ The purpose of this test is to study the effect of grid misalignment on approximation errors for a
very simple codimension two problem in R2. This example applies to both I1 and I2, since they are equal in this particular
case. We take f ðx; yÞ ¼ 1, and
uðx; yÞ ¼ cosðhÞ � x� sinðhÞ � y;
vðx; yÞ ¼ sinðhÞ � xþ cosðhÞ � y

ð45Þ
with h 2 ½0;p=2�. With this setup, u and v are signed distance functions, and their gradients are orthogonal. The true value of
the integral is I1 ¼ I2 ¼ 1. Our computations amount to checking the extent to which (26) is satisfied.

We tested PDF using the linear hat delta function dL;� with � ¼ h; 2h;
ffiffiffi
h
p

. We also ran with FDM1 and FDM2. Fig. 2 shows
the errors as a function of h. For FDM1 and FDM2, the errors are near the rounding error of the computer; gaps in the graphs
indicate values of h where the averaged absolute value of the relative error was zero. For the PDF method, the error is
dependent on the angle h. When h ¼ 0 or h ¼ p=2 (zero grid misalignment), the error is comparable to that of the FDM
methods, but for intermediate values of h, the error is much larger. Note that these are errors that will not decrease as h
decreases, since this problem is purely linear. In other words, this example demonstrates a lack of consistency for the PDF
algorithm. Since detr~u � 1 for this problem, the � ¼ 2h version of PDF is equivalent to PDFL, so we are also seeing a lack of
consistency for the PDFL algorithm.

Finally, although we do not show the results in Fig. 2, we also tested a product of approximate delta functions, as in (27),
based on the codimension one versions of FDM1 and FDM2. The result is the same type of angle-dependent error (implying a
lack of consistency) observed for the PDF algorithm. This shows the advantage of discretizing the wedge product formulation
(the right side of (12)), as opposed to simply forming a product of approximate codimension-one delta functions (the left side
of (12)).
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.610−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

θ

Er
ro

r

PDF: ε = h

PDF: ε = 2h

PDF: ε = sqrt(h)

FDM1 FDM2

Fig. 2. Example 1. Error in approximating I1 ¼ I2 for the case of n ¼ 2; m ¼ 2 as a function of grid misalignment.

J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836 3825
Example 2. ðn ¼ 2;m ¼ 2Þ We are approximating I1 in this example. We take
Table 1
Exampl

h

0.04
0.02
0.01
0.005
0.0025
0.00125
0.00062
uðx; yÞ ¼ y� xðx� 1Þ; vðx; yÞ ¼ 1
2

x2 � y; f ðx; yÞ ¼ ðx� 1Þ4 þ ðyþ 1Þ2 � 1:
Before applying the grid, we rotated all coordinates by p=4. The curves u ¼ 0 and v ¼ 0 intersect at an angle of 45� at the
single point (0,0) within the computational domain ½�1;1� � ½�1;1�, and f ð0;0Þ ¼ 1, so the exact solution is
I1 ¼ f ð0;0Þ ¼ 1. Fig. 3 shows how the various level curves meet at ðx; yÞ ¼ ð0;0Þ.

Table 1 shows that PDFL appears not to be consistent for this problem. However, PDF-FGN appears to converge at a rate of
OðhÞ. FDM1 also converges at a rate of a little better than OðhÞ, and both FDM1-FGN and FDM2 seem to converge at a rate of
Oðh2Þ. The FDM2-FGN algorithm is not shown in Table 1. For this example, it gives results very similar to FDM1-FGN.

Example 3. ðn ¼ 3;m ¼ 3Þ This is a linear problem in R3, with full codimension. We are computing both I1 and I2, since they
are equal in this particular case. In this example there are three level set functions u;v ;w : R3 # R1, and with
~uð~xÞ ¼ ðuðx; y; zÞ;vðx; y; zÞ;wðx; y; zÞÞT ,
~uð~xÞ ¼ M~x;
where the orthogonal matrix M is defined by
M ¼
0:12408589278267 �0:31264694662283 0:94172956732798
0:73918615017622 0:66227231287279 0:12247129863678
�0:66197169622272 0:68091649294869 0:31328294404654

2
64

3
75: ð46Þ
The integrand is given by f ðx; y; zÞ ¼ 1, so the value of the integral is 1. We first ran FDM1, FDM2, and PDF on this problem.
Note that for this linear problem with detr~u � 1, PDF and PDFL are the same. Without FGN processing, none of FDM1,
FDM2, PDF/PDFL converges to the exact solution. Table 2 shows that there are nonzero errors. These errors persist as we
shrink the mesh, since the problem is linear. When we added the FGN processing to FDM1, FDM2, and PDF/PDFL, all of them
gave the exact solution to within rounding error. Since each of the level set functions u; v; w is a signed distance function,
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

f(x,y) = 1

u(x,y) = 0
v(x,y) = 0

Fig. 3. Example 2. The level curves u ¼ 0 and v ¼ 0 intersect at an angle of 45�.

e 2.

FDM1 FDM1-FGN FDM2 PDFL Error PDF-FGN

Error Rate Error Rate Error Rate Error Rate

1.21e�2 7.78e�3 1.77e�2 6.15e�2 9.00e�3
3.15e�3 1.9 1.94e�3 2.0 4.49e�3 2.0 6.16e� 2 3.48e�3 1.4
7.71e�4 2.0 4.86e�4 2.0 1.12e�3 2.0 5.96e� 2 1.73e�3 1.0
1.79e�4 2.1 1.21e�4 2.0 2.77e�4 2.0 6.18e� 2 8.86e�4 .97
5.42e�5 1.7 3.03e�5 2.0 6.89e�5 2.0 6.01e� 2 4.43e�4 1.0
2.40e�5 1.2 7.59e�6 2.0 1.73e�5 2.0 6.00e� 2 2.29e�4 .95

5 1.06e�5 1.2 1.89e�6 2.0 4.27e�6 2.0 5.89e�2 1.17e�4 .97

Table 3
Example 4.

h FDM1 Error FDM2 Error PDFL Error FDM1-FGN FDM2-FGN PDF-FGN

Error Rate Error Rate Error Rate

0.025 9.98e�4 2.36e�3 2.72e�3 5.69e�4 6.38e�4 4.07e�3
0.025/2 2.36e�4 2.05e�3 3.10e�3 1.41e�4 2.0 1.58e�4 2.0 2.40e�3 0.76
0.025/4 7.83e�5 2.06e�3 3.26e�3 3.57e�5 2.0 4.00e�5 2.0 1.10e�3 1.1
0.025/8 8.08e�5 2.08e�3 3.88e�3 8.88e�6 2.0 1.00e�5 2.0 5.68e�4 0.95

Table 2
Example 3.

h FDM1 Error FDM1-FGN Error FDM2 Error FDM2-FGN Error PDFL Error PDF-FGN Error

0.003125 8.11e�5 2.05e�16 1.10e�3 1.63e�16 4.45e�3 3.05e�16

3826 J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836
and their level sets intersect orthogonally, we see that the difficulty posed by the problem is purely due to grid misalign-
ment. The FGN processing is effective because it re-aligns the level sets with the grid.

Example 4. ðn ¼ 3;m ¼ 3Þ This is a full codimension problem in R3. We compute I1, but the basic results are applicable to
the I2 version. In this example, there are three level set functions u; v ; w given by
uðx; y; zÞ ¼
ffi
ðx� 2Þ2 þ ðy� 3Þ2 þ ðz� 1Þ2

q
�

ffiffiffiffiffiffi
14
p

;

vðx; y; zÞ ¼
ffi
ðxþ 1Þ2 þ ðy� 2Þ2 þ ðz� 3Þ2

q
�

ffiffiffiffiffiffi
14
p

;

wðx; y; zÞ ¼
ffi
ðxþ 3Þ2 þ ðy� 1Þ2 þ ðzþ 2Þ2

q
�

ffiffiffiffiffiffi
14
p

;

ð47Þ
and f ðx; y; zÞ ¼ ex cosðyÞ cosðzÞ. We restrict the computational domain to a region near the origin, so that the three spherical
level sets only intersect at ðx; y; zÞ ¼ ð0;0;0Þ, and so I1 ¼ f ð0;0;0Þ ¼ 1. Each of u;v ;w is a signed distance function. The gra-
dients are not orthogonal, but detr~uð0;0;0Þ � 0:802, so this problem is not in any way singular.

It is clear from Table 3 that none of FDM1, FDM2, PDFL converges to the true solution for this problem. However, FDM1,
FDM2, and PDF appear to be consistent when the FGN processing is added.

Example 5. ðn ¼ 3;m ¼ 2Þ We compute I1 for this codimension two problem in R3. For this example
uðx; y; zÞ ¼ z� b1ð1� ð4xÞ2 � y2Þ;
vðx; y; zÞ ¼ z� b2ð1� ð4xÞ2 � y2Þ;

ð48Þ
where b1 ¼ 1; b2 ¼ 1:01. The zero level sets intersect in the xy-plane in the ellipse ð4xÞ2 � y2 ¼ 1. Note that with b1 and b2 so
nearly equal, the level sets are very close to parallel. For the integrand, we used f ðx; y; zÞ ¼ ezð1þ x2 þ y2Þ, and the value of the
integral (2) is � 6:0417403.

We rotated all coordinates by the matrix A defined by
A ¼
1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

0 �1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

2=
ffiffiffi
6
p

�1=
ffiffiffi
6
p

�1=
ffiffiffi
6
p

2
64

3
75 ð49Þ
before applying the grid.
We tested FDM1, FDM2, and PDF with PGN processing. Without the PGN processing, none of the three methods gave

useful results – this is due to the extreme collinearity of the level sets. However, as shown in Table 4, all of the methods gave
what appears to be Oðh2Þ approximations when used with the PGN processing.

Example 6. ðn ¼ 3;m ¼ 2Þ This is another codimension two problem in R3, and we compute I1 again. For this example
uðx; y; zÞ ¼ 1� ðx2 þ y2Þ;
vðx; y; zÞ ¼ x sinðzÞ � y cosðzÞ;

ð50Þ
and
f ðx; y; zÞ ¼ sin4ðz=2� p=2Þ cosðvðx; y; zÞ=2Þ; �p < z < p;
0; otherwise:

(
ð51Þ

Table 4
Example 5.

h FDM1-PGN FDM2-PGN PDF-PGN

Error Rate Error Rate Error Rate

0.125 9.40e�3 2.32e�2 1.19e�1
0.125/2 3.75e�3 1.3 3.51e�3 2.7 2.73e�2 2.1
0.125/4 1.03e�3 1.9 6.94e�4 2.3 6.55e�3 2.1
0.125/8 4.71e�4 1.9 1.32e�4 2.4 1.61e�3 2.0

J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836 3827
We rotated all coordinates by the matrix A (defined in Eq. (49) above) before applying the grid. The level set functions u and v
are not signed distance functions, but ru and rv are orthogonal where the zero level sets intersect.

The intersection of the two zero level sets is a pair of helices. The integral can be computed in closed form, I1 ¼ 3p=
ffiffiffi
2
p

.
Tables 5 and 6 show the results of our algorithm on this problem. It appears that all of FDM1, FDM2, FDM1-PGN, and FDM2-
PGN approximations are converging at a rate of Oðh2Þ, with the PGN processing providing an improvement in accuracy for
both FDM1 and FDM2.

The PDF algorithm appears from Table 5 not to be consistent. It is hard to tell from Table 6 whether or not the PDF-PGN
algorithm is consistent.

Finally, for this example we also tested products of codimension one FDM1 and FDM2 algorithms, as in (27), both with
and without PGN processing. In each case, we observed Oðh2Þ convergence, but with errors larger (by a factor of 2 for the
FDM1 algorithms, and a factor of 5 for the FDM2 algorithms) than those shown in Tables 5 and 6 for the corresponding
wedge product versions.

Example 7. ðn ¼ 3;m ¼ 2Þ This is a final I1 computation of a codimension two problem in R3. For this example
Table 5
Exampl

h

0.4
0.2
0.1
0.05

Table 6
Exampl

h

0.4
0.2
0.1
0.05
uðx; y; zÞ ¼

R� jxj; jyj 6 L=2

R�
ffi
x2 þ ðy� L=2Þ2

q
; y P L=2

R�
ffi
x2 þ ðyþ L=2Þ2

q
; y 6 �L=2

8>>><
>>>:

; vðx; y; zÞ ¼ z: ð52Þ
Here L ¼ 2; R ¼ 0:12
ffiffiffi
2
p

. We let f ðx; y; zÞ ¼ expð�z2Þ. Before applying the mesh, we rotate all coordinates by 45� about the z-
axis. This is basically the capsule example of [5,17], except that we have embedded the curve in R3 in a very simple way, and
added the exponential integrand f. The value of the integral (2) is the length of the curve. For the codimension 1 version of
this problem, pointwise defined approximate delta functions such as dC;� and dL;� are known to produce approximations to
the arclength that are not consistent.

We compare FDM1, FDM2, and PDF in Table 7. For the PDF algorithm, we used dC;� with � ¼ 1:5Dx. The FDM algorithms
appear to be converging at a rate of about Oðh2Þ, while the PDF algorithm does not seem to be consistent. PGN processing
does not significantly alter the results shown in Table 7, probably because the level set functions u and v already intersect
orthogonally, and they are signed distance functions.
e 6 without PGN.

FDM1 FDM2 PDF

Error Rate Error Rate Error Rate

1.91e�2 3.73e�2 3.56e�2
4.25e�3 2.2 8.55e�3 2.1 9.21e�3 2.0
1.05e�3 2.0 2.15e�3 2.0 3.47e�3 1.4
2.90e�4 1.9 5.41e�4 2.0 2.36e�3 0.56

e 6 with PGN.

FDM1-PGN FDM2-PGN PDF-PGN

Error Rate Error Rate Error Rate

8.14e�3 1.52e�2 2.13e�1
1.07e�3 2.9 1.65e�3 3.2 3.00e�2 2.8
2.57e�4 2.1 4.16e�4 2.0 6.14e�3 2.3
6.36e�5 2.0 1.04e�4 2.0 2.15e�3 1.5

Table 7
Example 7.

h FDM1 FDM2 PDF

Error Rate Error Rate Error Rate

0.15 1.15e�1 1.18e�1 1.09e�1
0.15/2 9.10e�3 3.7 1.41e�2 3.1 7.90e�3 3.8
0.15/4 2.18e�3 2.1 3.44e�3 2.0 2.83e�3 1.5
0.15/8 5.40e�4 2.0 8.65e�4 2.0 1.19e�3 1.3
0.15/16 1.43e�4 1.9 2.16e�4 2.0 2.37e�3 0

3828 J.D. Towers / Journal of Computational Physics 228 (2009) 3816–3836
Example 8. ðn ¼ 2;m ¼ 2Þ In this example we compute I2 for a full codimension problem in R2. We define
Fig. 4.
a spuri

Table 8
Exampl

h

0.0025
0.0025/
0.0025/
0.0025/
0.0025/
0.0025/
0.0025/
uðx; yÞ ¼ �x2 þ xþ y; vðx; yÞ ¼ 1
2
ðx cos h� y sin hÞ2 � ðx sin hþ y cos hÞ; ð53Þ
where h ¼ p=4� p=128. For this example, the zero level sets intersect at the single point ðx; yÞ ¼ ð0;0Þ within the computa-
tional domain ¼ ð�0:06;0:06Þ � ð�0:06;0:06Þ, and at that point the Jacobian is ¼ cosðhÞ � sinðhÞ. We take f ðx; yÞ ¼ ex cos y.
The value of the integral I2 is
I2 ¼ f ð0;0Þ=jdetr~uð0;0Þj ¼ 1=j cos h� sin hj:
Thus the Jacobian vanishes at h ¼ p=4, and with our choice of h ¼ p=4� p=128, the problem is nearly singular because the
zero level sets of u and v are nearly collinear.

In this example there is a spurious contribution to both the FDM1-FGN and FDM2-FGN delta function due to the fact that
the Jacobian vanishes along a curve, see Fig. 4. This is the potential difficulty described in Section 3.1. We use the fix
described in that section. For FDM1-FGN, we set the approximate delta function dh

j;k equal to zero if detrh~ujþr;kþs, do not all
have the same sign for �1 6 r 6 1; �1 6 s 6 1. For FDM2-FGN, we perform the same check but for �2 6 r 6 2; �2 6 s 6 2.
Without these fixes, neither FDM1-FGN nor FDM2-FGN gives useful results. The PDF-FGN algorithm is uneffected by the
vanishing Jacobian, and does not require any fix.

When used without FGN, none of FDM1, FDM2, PDF, PDFL gave useful results – this is due to the near singularity of the
problem. From Table 8, it seems that both FDM1-FGN and PDF-FGN are converging at a rate of about OðhÞ. FDM2-FGN
appears to be converging at a rate of about Oðh2Þ.
−0.06 0 0.06
−0.06

0

0.06

−0.06 0 0.06
−0.06

0

0.06

level sets
intersect at
(0,0)

level sets
intersect at
(0,0)

Jacobian = 0

spurious
delta
function

(a) (b)

Example 8. Zero level sets of u and v without (a) and with (b) FGN processing. In (b), the Jacobian vanishes along the jagged curve, potentially causing
ous contribution to the FDM-FGN approximate delta function at the indicated point.

e